Norwegian Climate Prediction Model: Difference between revisions

From Norcpm
Msh065 (talk | contribs)
No edit summary
No edit summary
 
(186 intermediate revisions by 7 users not shown)
Line 1: Line 1:
'''[[Wiki development | PLEASE READ THIS BEFORE EDITING]]'''
The Norwegian Climate Prediction Model (NorCPM) is aiming at providing prediction from seasonal-to-decadal time scale. It is based on the Norwegian Earth System Model (NorESM, [http://noresm.org]) and the Ensemble Kalman Filter (EnKF, [http://en.wikipedia.org/wiki/Ensemble_Kalman_filter]) data assimilation method. NorESM is a state of the art Earth system model that is based on the Community Earth System Model (CESM, [https://en.wikipedia.org/wiki/Community_Earth_System_Model]) but uses a different aerosol/chemistry scheme and ocean model (evolved from MICOM). [[File:slide1.jpg | thumb | The Norwegian Climate Prediction Model]] The EnKF is a sequential data assimilation method that allows for fully multivariate and flow-dependent corrections using a covariance matrix produced by a Monte-Carlo ensemble integration.


The Norwegian Climate Prediction Model (NorCPM) is aiming at providing prediction from seasonal-to-decadal time scale. It is based on the Norwegian Earth System Model (NorESM, [https://wiki.met.no/noresm/start]) and the Ensemble Kalman Filter (EnKF, [http://en.wikipedia.org/wiki/Ensemble_Kalman_filter]) data assimilation method. NorESM is a state of the art Earth system model that is based on CESM ([http://en.wikipedia.org/wiki/Community_Climate_System_Model]), but uses different aerosol/chemistry scheme and ocean model (evolved from MICOM). The EnKF is a sequential data assimilation method that allows for fully multivariate and flow dependent correct using a covariance matrix procuded by a Monte-Carlo ensemble integration. Currently the system only intend to update the ocean part as this is where most of the predictability is expected, but additional atmospheric nudging and assimilation of land variables are also considered.
== NorESM model versions used in NorCPM==


== News ==
== Model releases ==
== Prediction activities ==
The optimal goal is to test the capability of our system on disparate phase of the climate in order to gain confidence on the robustnes of its accuracy. SST is the only observational data set available for a period of time sufficient (> 100 years) to clearly demonstrate skill for decadal prediction. Ideally a start date every 5 years seems achievable.
=== Model-model prediction with assimilation of synthetic SST data === 
=== Evaluation of prediction hindcast simulations with real SST data ===
The observational data set used so far is  the ensemble of SST data (refereed as HADISST2), which provide monthly SST for 1850--2007 with 10 members. Each member reconstructs SST using a different set of possible unknown parameters.
At term we intend to perform retrospective reanalysis and decadal prediction (hindcast) over the last century, but here we have decided to focus on a shorter period (1980-2005) because the system is still premature and there are many independent observations during this period of time.
== Existing runs ==
Following is a table that summarise the different experiment run so far:
{| class="wikitable" style="text-align:center"
{| class="wikitable" style="text-align:center"
|+Multiplication table
|-
|-
! Name on Norstore !! NorESM version !! observation !! ens size !! Freq assim|| full_field/anom !! ocean var updated !! post process !! Masked coast !! localisation !! Atmo nudging !! Prediction !Finished/Ongoing !! Remark
!Version    || atmosphere/land resolution  || ocean/sea ice resolution  || description  || reference   
|-
!NorESM1-L || T31 || bipolar gx3v7 (~3°) || || [https://www.geosci-model-dev.net/5/1033/2012/gmd-5-1033-2012.pdf Zhang et al., 2012]
|-
|-
! First_Try
!NorESM1-LT || 1.9°x2.5° || tripolar 1° || || [https://doi.org/10.5194/gmd-9-2589-2016 Schwinger et al. 2016],[https://www.sciencedirect.com/science/article/pii/S146350031730063X?via%3Dihub Wang et al. 2017], [https://www.tandfonline.com/doi/abs/10.1080/16000870.2018.1435945, Kimmritz et al. 2018]
| F19_tn21 || SST || 30 || monthly|| anom || all  || fixenkf || yes || point || no || 1990,1992,1995,1996 || Finished  || minor bug in EnKF, small drift in MSL, good SPG
|-
|-
! Second_Try
!NorESM1-F || 1.9°x2.5° || tripolar 1° ||  || [https://www.geosci-model-dev-discuss.net/gmd-2018-217/ Gao et al. 2018]
| F19_tn21 || SST || 30 || monthly|| anom || all  || fixenkf || yes || point || no || 1995 || Finished || small drift in MSL, good SPG
|-
|-
! Third_Try
!NorESM1-ME || 1.9°x2.5° || bipolar 1° || CMIP5 forcings || [https://www.geosci-model-dev.net/6/687/2013/gmd-6-687-2013.html Bentsen et al. 2013], [https://www.geosci-model-dev.net/6/301/2013/ Tjiputra et al., 2013]
| F19_tn21 || SST || 30 || monthly || anom || T and S  || fixenkf || yes || point || no || none || Finished || weak SPG in reanalysis
|-
|-
! Fourth_Try
!NorESM1-ME-CMIP6 || 1.9°x2.5° || bipolar 1° || CMIP6 forcings || Bethke et al. in prep2
| F19_tn21 || SST || 30 || monthly || anom || T and S and Barot. || micomserial || yes || point || no || none || Finished || unrealistic
|-
|-
! Fifth_Try
!NorESM1-ACPL || 1.9&#176;x2.5&#176; || bipolar 1&#176; || Anomaly coupling modifies coupling fields by a fixed seasonal climatological correction, <br />such that biases in SSTs and surface wind stress are obviated. || [https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018MS001288 Toniazzo and Koseki 2018]
| F19_tn21 || SST || 30 || monthly || anom || all || micom_serial || yes || point || no || 1995 || Finished || very mild improvement compare to second
|-
|-
! ME
!NorESM1-H || 0.9x1.25&#176; || tripolar 1/4&#176; || || [https://link.springer.com/article/10.1007/s00382-018-4184-5 Langehaug et al. 2018]
| F19_G16  || SST || 30 || monthly || anom || all  || micom_serial || yes || point || no || no || ongoing || ??
|-
|-
! Yiguo_try
!NorESM1-High-Top || 1.9&#176;x2.5&#176; || bipolar 1&#176; || The atmosphere component CAM is replaced by WACCM|| [https://doi.org/10.1029/2019JD030903 Li et al. 2019]
| F19_tn21 || SST || 30 || monthly || anom || All(superlayer) || micom_serial || yes || point || no || no || ongoing || ??
|-
|-
! FF_ini_try
!NorESM2-LM || 2&#176; || tripolar 1&#176;  || || [https://doi.org/10.5194/gmd-13-6165-2020 Seland et al. 2020]
| F19_tn21 || SST || 30 || monthly || full || all || micom_serial || yes || point || no || no || Finished || ??
|-
!NorESM2-MM || 0.9x1.25&#176; || tripolar 1&#176;  || || [https://doi.org/10.5194/gmd-13-6165-2020 Seland et al. 2020]
|-
!NorESM1.3-HR || .25; || tripolar .25;  || || [https://doi.org/10.5194/gmd-13-6165-2020 Seland et al. 2020]
|}
|}


== NorCPM Versions ==
'''FREE''': refers to an ensemble simulation of NorESM carried without assimilation and starting from the same initial ensemble than the assimilation experiment. The initial ensemble is generated by spinning up an ensemble of states (sampled from a long preindustrial forcing run) with real historical forcing from 1850. Such an experiment provides a benchmark for data assimilation and is also used to disentangle the part of prediction skill related to natural internal variability from the part driven by external forcing.
<br /> '''Version 0 (V0)''': refers to version of NorCPM that assimilates SST only. SST is the only observational dataset available in the ocean for a period of time sufficient (> 100 years) to clearly demonstrate the skill of decadal prediction. Assimilation updates vertically the full ocean while the remaining components of the Earth system model (atmosphere, sea ice, land) are left unchanged but they will adjust dynamically between the monthly assimilation step (an approach referred as weakly coupled data assimilation).
:V0 was first tested in idealised twin experiment ([http://www.tellusa.net/index.php/tellusa/article/view/21074 Counillon et al. 2014]). It is found that assimilation reduces error and can constrain well the variability of the ocean – with the largest improvements in the near surface and sea ice with some benefit over land for temperature and precipitation. The system beats persistence forecast and shows skill for the heat content in the Nordic Seas that is close to the upper predictability limit.
:V0 was tested in a real framework and a long stochastic reanalysis was produced for the period 1950—2010 which assimilates the anomaly of the HadiSST2 within the period 1950-2010. HadiSST2 provides a stochastic reconstruction of SST - that is, providing a three-dimensional estimate of the measurement and its accuracy - for the period 1850-2010. A method referred to as upscaling ([https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2709 Wang et al. 2016]) is used to ensure that the assimilation does not introduce a drift when updating the non-Gaussian distributed layer thickness variables. The system can reproduce well the North Atlantic variability and shows good agreement with the independent objective analysis of the oceanic heat content and salt content globally. It was noted that using a flow-dependent data assimilation method and formulating the ocean covariance in isopycnal coordinates are an important ingredient for efficiently propagating the surface information below the mixed layer in the Labrador Sea and to constrain the formation of deep water convection.
:In Wang et al. (sub) hindcasts are started from a shorter reanalysis (started in 1980) reanalysis. The system shows highly competitive skill compared to [https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-multi-model-ensemble North American Multi-Model Ensemble] and skillful skill for sea ice extent was variability is driven by ocean variability (e.g. in the boreal winter in the Barents Sea, the Labrador Sea and Greenland Iceland Nordic Seas). The skill of decadal hindcasts was tested for 1955:2010. There is some skill for prediction of AMO and AMOC at 26 but the prediction of the SPG is poor despite a very good match during the reanalysis. Bethke et al. in prep1 identified that the reason for the poor forecast is a combination of poor initialisation of the deep subtropical water temperature and near-surface salinity in the SPG region.
<br /> '''Version 1 (V1)''': the system is complemented with the assimilation of hydrographic profiles. Assimilating observations in an isopycnal coordinate model is not straightforward as the observation operator must interpolate either from isopycnal coordinates to z coordinates or vice versa. In [https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2709 Wang et al. 2016] it is shown that the approach to interpolate the model onto z coordinates (still keeping the covariance in isopycnal coordinates) is more linear than interpolating the observations to isopycnal coordinates and as such more efficient. Practical implementations of localisation and the representation error were extensively tested and V1 has been run with an optimal setting. The system is shown to be able to constrain well the error in the interior while being reliable. The performance of the prediction was tested for the period 1980-2017 in the real framework with anomaly assimilation. While complementing the system with hydrographic profile yields little benefit on the seasonal time scale, it greatly enhances the skill for decadal predictions in the SPG region (Bethke et al. in prep1). There are currently different version of V1. In V1a, all ocean observations are kept and we do not update the sea ice compartment during assimilation. In V1b, we reject observation if it is located in places where there is ice. In v1c all observations are retained but the error for hydrographic profiles is inflated by a factor of 3 in sea ice covered region because there is large uncertainty for the climatology there (with anomaly assimilation). We also update the sea ice compartment (strongly coupled DA).  Most difference between v1a, v1b, and v1c is in sea ice covered region and v1c is performing best there. V1c and v1a will be used for CMIP6 DCPP.
<br /> '''Version 2 (V2)''': the system is complemented with assimilation of sea ice concentration. In [https://www.tandfonline.com/doi/abs/10.1080/16000870.2018.1435945 Kimmritz et al. 2018], we tested different implementations of the data assimilation system in an idealised twin experiment. It is shown that a joint update of the ocean and the sea ice state during the assimilation is beneficial (strongly coupled data assimilation) with a flow-dependent covariance method. It is also strongly beneficial to include the different thickness categories in the state vector. Assimilation is able to constrain well errors in sea ice and in the near-surface ocean. The method is tested in the real framework in Kimmritz et al. in prep. The system show reduced error for sea ice thickness. Prediction of sea ice extent are also greatly enhanced in many regions were sea ice yields predictability.


== Projects using NorCPM ==
<br /> '''High-Top''': the system is developped for subseasonal-to-seasonal(S2S)prediction [https://doi.org/10.1029/2019JD030903 Li et al. 2019]. In this version, the atmospheric component (normally the CAM model) is replaced with the Whole Atmosphere Community Climate Model (WACCM) version 4 (Marsh et al., 2013). WACCM extends vertically into the mesosphere‐lower thermosphere region (up to 5.9 × 10−6 hPa, approximately 140 km). In addition, it incorporates an interactive stratospheric chemistry package and a parameterization of orographic and nonorographic (convective and frontal) gravity waves. A 30-year set of coupled S2S hindcasts were made with initialised atmosphere, ocean and land components to examine the role of snow cover initialisation in wintertime predictions through a stratosphere-troposphere coupling. A twin hindcast set with scrambled snow initial conditions was also made to determine the skill increment.
PRACTICE, EPOCASA, PREFACE, INCREASE, PARADIGM


== Publications, etc. ==
<br /> For each of the NorCPM version the assimilation are either carried using '''full field assimilation''' or '''anomaly assimilation'''. In '''full field assimilation''' the observations are assimilated as they are. An advantage of that approach is that it constrains the model bias, but there is a risk that models are attracted to their bias climatology. In such a case, the redundant corrections will transfer the bias from the observed variables to the non-observed variables via the covariance during assimilation. In '''anomaly assimilation''' the anomaly of model and observation are calculated from their respective seasonal climatology before they are compared. As a consequence, bias is left as they are and we aim only at synchronising the variability. This approach also has some drawback as bias in the mean state comes with a bias in its variability (for example with the classical bilocation of the Gulf Stream). [https://www.nonlin-processes-geophys.net/21/521/2014/ Carrassi et al. 2014] details the advantage and inconvenient of both approaches.
<br /> Dr Barthelemy is currently investigating a suites of computationally cheaper data assimilation method than the standard EnKF. The first one is the Hybrid EnKF-OI which combine the dynamical covariance with stain covariance from a long 300 year pre industrial run. The second one seeing the Dual-resolution EnKF in which the covariance of the system at two resolution are combined for the data assimilation step.  The combined EnKF-OI and Dual resolution EnKF are also tested. The EnOI is also considered as one of the benchmark in which covariance are constructed from a long pre industrial run.  


'''Peer-review'''
=== Projects funding the NorCPM activities === 
<br /> '''Current''':NFR-SFI Climate Futures (2020-2030), NFR-INES (2018-2021),  BFS-BCPU (2018-2021),  EU-TRIATLAS (2019-2024), JPI ROADMAP (2020-2022), JPI-EUREC4A-OA (2020-2022), NFR COREA (2020-2023), SKD-PARCIM (2021-2024), NFR 4SICE (2021-2024)
<br /> '''Completed''':NFR-SNOWGLACE (2015-2018), NFR-EPOCASA (2014-2017), EU-PREFACE (2014-2017), SKD-PARADIGM (2015-2017), SKD- INCREASE (2015-2017), SKD-PRACTICE (2012-2015), EU-INTAROS (2016-2020), EU-Blue-Action (2016-2019), NFR-SFE (2018-2021), [https://ncoe-arcpath.org Norforsk-ARCPATH (2016-2020)],


* [http://www.tellusa.net/index.php/tellusa/article/view/21074 Counillon, F., Bethke, I., Keenlyside, N., Bentsen, M., Bertino, L., & Zheng, F. (2014). Seasonal-to-decadal predictions with the ensemble Kalman filter and the Norwegian Earth System Model: a twin experiment. Tellus A, 66. doi:10.3402/tellusa.v66.21074]
<br /> NorCPM activities receive a grant for computer time from the Norwegian Program for supercomputer (NOTUR2, project number NN9039K) and a storage grant (NORSTORE, NS9039K).
== Publications, outreach etc. ==
NorCPM is contributing to the [https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/long-range/wmolc-adcp WMO Lead Centre for Annual-to-Decadal Climate Prediction] and Sea ice outlook under the name BCCR and to CMIP6 DCPP under the name norcpm-1.
<ol>
<li>[http://www.tellusa.net/index.php/tellusa/article/view/21074 Counillon, F., Bethke, I., Keenlyside, N., Bentsen, M., Bertino, L., & Zheng, F. (2014). Seasonal-to-decadal predictions with the ensemble Kalman filter and the Norwegian Earth System Model: a twin experiment. Tellus A, 66. doi:10.3402/tellusa.v66.21074]</li>
<li>[https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2709 Wang Y, Counillon F, Bertino L. Alleviating the bias induced by the linear analysis update with an isopycnal ocean model. Quarterly Journal of the Royal Meteorological Society. 2016. https://doi.org/10.1002/qj.2709]</li>
<li>[https://www.tandfonline.com/doi/abs/10.3402/tellusa.v68.32437 Counillon F, Keenlyside N, Bethke I, Wang Y, Billeau S, Shen M-L, et al. Flow-dependent assimilation of sea surface temperature in isopycnal coordinates with the Norwegian climate prediction model. Tellus. Series A, Dynamic meteorology and oceanography. 2016;68:32437.]</li>
<li>[http://iopscience.iop.org/article/10.1088/1748-9326/aa8cfa/meta Gleixner S.; Keenlyside N.; Dimissie T., Counillon F., Wang Y.; Viste E. Seasonal predictability of Kiremt rainfall in CGCMs, Environmental Research Letters 2017.]</li>
<li>[https://www.sciencedirect.com/science/article/pii/S146350031730063X?via%3Dihub Wang Y, Counillon F, Bethke I, Keenlyside N, Bocquet M, Shen M-L. Optimising assimilation of hydrographic profiles into isopycnal ocean models with ensemble data assimilation. Ocean Modelling. 2017;114.]</li>
<li>[https://www.tandfonline.com/doi/abs/10.1080/16000870.2018.1435945 Kimmritz M., Counillon F., Bitz C.M., Massonnet F., Bethke I., Gao Y. Optimising assimilation of sea ice concentration in an Earth system model with a multicategory sea ice model, Tellus A., 2018]</li>
<li>[https://doi.org/10.1007/s00382-019-04897-9 Wang, Y., Counillon, F., Keenlyside, N. et al. Seasonal predictions initialised by assimilating sea surface temperature observations with the EnKF, Clim Dyn, 2019. https://doi.org/10.1007/s00382-019-04897-9]</li>
<li>[https://doi.org/10.1029/2019JD030903 F. Li, Y. J. Orsolini, N. Keenlyside, M.-L. Shen, F. Counillon, Y. Wang Impact of snow initialization in subseasonal-to-seasonal winter forecasts with the Norwegian Climate Prediction Model. JGR 10.1029/2019JD030903]</li>
<li>[https://doi.org/10.1029/2019JC015210 Jackson et al. (2019): The mean state and variability of the North Atlantic circulation: A perspective from ocean reanalyses. Journal of Geophysical Research: Oceans, 124, 2–30.]</li>
<li>[https://doi.org/10.1029/2019MS001825 Kimmritz, M., Counillon, F., Smedsrud, L. H., Bethke, I., Keenlyside, N., Ogawa, F., & Wang, Y. ( 2019). Impact of ocean and sea ice initialisation on seasonal prediction skill in the Arctic. Journal of Advances in Modeling Earth Systems, 11.]</li>
<li>[https://doi.org/10.3389/fmars.2020.00386 Fransner, F., Counillon, F., Bethke I., Tjiputra J., Samuelsen A., Nummelin A., Olsen, A. Ocean Biogeochemical Predictions—Initialization and Limits of Predictability. Frontiers in Marine Science, 16, 2020 ]</li>
 
<li>[https://doi.org/10.1038/s41586-020-2525-0 D. Smith et al., North Atlantic climate far more predictable than models imply, Nature, 583, 796–800 (2020)]</li>
<li>[https://doi.org/10.1007/s00382-020-05196-4 Dai P, Gao Y, Counillon F, Wang Y, Kimmritz M, Langehaug HR. Seasonal to decadal predictions of regional Arctic sea ice by assimilating sea surface temperature in the Norwegian Climate Prediction Model. Climate Dynamics. 2020]
<li>Yang S, Gao Y, Koenigk T, Keenlyside N, Counillon F. The Climate Model: An ARCPATH Tool to Understand and Predict Climate Change. In: Nordic Perspectives on the Responsible Development of the Arctic: Pathways to Action. 2020.</li>
<li>Keenlyside N, Kosaka Y, Vigaud N, Robertson A, Wang Y, Dommenget D, et al. Basin Interactions and predictability. In: Interacting Climates of Ocean Basins. 2020.</li>
<li>[https://link.springer.com/article/10.1007/s00382-020-05605-8 Counillon F., Keenlyside N., Koseki S., Demissie T., Svendsen L., Toniazzo T., Bethke I., Wang Y. Relating model bias and prediction skill in the equatorial Atlantic, Clim Dyn (2021).]</li>
<li> [https://iopscience.iop.org/article/10.1088/1748-9326/abfe8b Guttu,S., Y. Orsolini, F. Stordal, O. H. Otterå and N.-E. Omrani The 11 year solar cycle UV irradiance effect and its dependency on the Pacific Decadal Oscillation, Environ. Res. Lett. 16 (2021) 064030.]</li>
<li>  [https://www.mdpi.com/2073-4433/12/8/1029 Guttu S, Orsolini Y, Stordal F, Otterå OH, Omrani N-E, Tartaglione N, Verronen PT, Rodger CJ, Clilverd MA. Impacts of UV Irradiance and Medium-Energy Electron Precipitation on the North Atlantic Oscillation during the 11-Year Solar Cycle. Atmosphere (Special Issue Dynamics and Chemistry of the Middle and Upper Atmosphere and Its Response to External Forcing—Observations and Models). 2021; 12(8):1029. https://doi.org/10.3390/atmos12081029.]</li>
<li>[https://gmd.copernicus.org/articles/14/7073/2021/ Bethke, I., Wang, Y., Counillon, F., Keenlyside, N., Kimmritz, M., Fransner, F., Samuelsen, A., Langehaug, H., Svendsen, L., Chiu, P.G. and Passos, L., 2021. NorCPM1 and its contribution to CMIP6 DCPP. Geoscientific Model Development, 14(11), pp.7073-7116.]</li>
<li>[https://www.frontiersin.org/articles/10.3389/fmars.2022.775394/full Singh, T., Counillon, F., Tjiputra, J., Wang, Y. and El Gharamti, M., 2022. Estimation of Ocean Biogeochemical Parameters in an Earth System Model Using the Dual One Step Ahead Smoother: A Twin Experiment. Frontiers in Marine Science.]</li>
<li>[https://journals.ametsoc.org/view/journals/clim/aop/JCLI-D-20-1007.1/JCLI-D-20-1007.1.xml Langehaug, H.R., Ortega, P., Counillon, F., Matei, D., Maroon, E., Keenlyside, N., Mignot, J., Wang, Y., Swingedouw, D., Bethke, I. and Yang, S., 2021. Propagation of Thermohaline Anomalies and their predictive potential along the Atlantic water pathway. Journal of Climate, pp.1-60.]</li>
<li>[https://doi.org/10.1007/s00382-022-06437-4 Passos, L., Langehaug, H.R., Årthun, M., Eldevik, T., Bethke, I. and Kimmritz, M., 2022. Impact of initialization methods on the predictive skill in NorCPM: an Arctic–Atlantic case study. Climate Dynamics.]</li>
<li>[https://doi.org/10.1007/s10236-022-01523-x Barthélémy, S., Brajard, J., Bertino, L. and Counillon, F., 2022. Super-resolution data assimilation. Ocean Dynamics.]</li>
</ol>


== User Resources ==
== User Resources ==
All the code for running the system is available on GitHub. The repository is private so please request to an account to access it.
[[https://github.com/BjerknesCPU/NorCPM https://github.com/BjerknesCPU/NorCPM]]


* [[NorCPM User Manual]]


== Contact informations ==
<br /> '''Leader''' [https://www.uib.no/en/persons/Noel.Keenlyside Prof. Noel Keenlyside];
<br /> '''NorESM related questions''' [https://uni.no/en/staff/directory/ingo-bethke/ Dr. Ingo Bethke], [https://uni.no/en/staff/directory/alok-kumar-gupta/ Alok Gupta];
<br /> '''Data assimilation related questions''' [https://www.nersc.no/staff/francois-counillon Dr. François Counillon], [https://www.nersc.no/staff/yiguo-wang Dr. Yiguo Wang]; [https://www.uib.no/en/persons/Sebastien.Barthelemy, Dr. Sebastien Barthelemy]
<br /> '''Sea ice prediction''' [https://www.nersc.no/staff/francois-counillon Dr. François Counillon], [https://www.nersc.no/staff/yiguo-wang Dr. Yiguo Wang];
<br /> '''Atmospheric nudging''' [https://www.uib.no/en/persons/Mao-Lin.Shen Dr. Mao-Lin Shen], [https://www.nilu.no/Default.aspx?tabid=70&ctl=EmployeeDetails&mid=972&employeeid=6798&tabmoduleid=2333 Dr. Fei Li];
<br /> '''Biochemistry predictions''' [https://www.uib.no/personer/Sara.Filippa.Krusmynta.Fransner Dr. Filippa Fransner] [https://www.nersc.no/staff/tarkeshwar-singh Dr. Tarkeshwar Singh]
<br /> '''High-top version''' [https://www.nilu.no/Default.aspx?tabid=70&ctl=EmployeeDetails&mid=972&employeeid=6798&tabmoduleid=2333 Dr. Fei Li] [https://www.nilu.com/?s=Orsolini&post_type=employee Prof. Yvan J. Orsolini]
== Existing runs ==
Following is a table that summarise the different experiment runs available so far:


== Working group ==
All data are available on Norwegian storage facilities [https://opslog.sigma2.no/ NIRD norwegian ]. All path below are given relative to the path /projects/NS9039K/shared/norcpm/cases/NorCPM/. If you have access to NIRD but not to NS9039K contact Noel Keenlyside or Ingo Bethke otherwise contact the person with relevant expertise as detailed in the Contact information section.


*[[Meeting minutes of working group ]]


== Contact informations ==
 
Noel.Keenlyside@gfi.uib.no (leader); ingo.bethke@uni.no (NorESM related question); francois.counillon@nersc.no (EnKF related question); maolin.shen@gfi.uib.no (atmospheric nudging related question)
{| class="wikitable" style="text-align:center"
|+Reanalysis
|-
! Name              !! NorESM version !! full_field/anom !! NorCPM version !! Obs data set !! ens size !! assim freq !! period        !! forcing !! var updated !! localisation          !! Path on NIRD                  !!  Dataset DOI                                    !! Publications using it
|-
! Reana_twin_PI || NorESM1-L        || full_field            ||  V0                      || Micom SST  || 30          || monthly    || 610-710    || PI                  || ocn(all)        || poin hor. no vert || tape                        ||                                || [http://www.tellusa.net/index.php/tellusa/article/view/21074 Counillon et al. 2014]
|-
! Free_PI            || NorESM1-L        || FREE                ||  -                        || -                    ||  30          || -                || 610-710      || PI                  || -                    || -                          || tape                      ||                                || [http://www.tellusa.net/index.php/tellusa/article/view/21074 Counillon et al. 2014]
|-
! Free_NorESM1|| NorESM1-ME    || FREE                ||  -                        || -                    ||  30          || -                || 1850-2099 ||CMIP5 hist    || -                    || -                          || ../NorESM1-ME_historicalExt_noAssim/  || || [https://www.tandfonline.com/doi/abs/10.3402/tellusa.v68.32437 Counillon et al. 2016]
|-
! Free_NorESM1-LM|| NorESM1-LM    || FREE                ||  -                        || -                    ||  30          || -                || 1850-2099 ||CMIP6 hist    || -                    || -                          || ../NorESM1-CMIP6//  || || Bethke et al. in prep2
|-
! Reana-V0-long|| NorESM1-ME    || anom                ||  V0                      || HadiSST2      || 30          || monthly  || 1950-2010  || CMIP5 hist    || ocn(all)          ||poin hor. no vert || True_Obs-1950-2010/ME/        ||        10.11582/2016.00002        || [https://www.tandfonline.com/doi/abs/10.3402/tellusa.v68.32437 Counillon et al. 2016], Bethke et al. in prep1
|-
! Reana-V0-short|| NorESM1-ME    || anom                ||  V0                      || HadiSST2      || 30          || monthly  || 1980-2010  || CMIP5 hist    || ocn(all)          ||30 obs || True_Obs-1980-2000/ana_19800115_me/ || || [https://doi.org/10.1007/s00382-019-04897-9 Wang et al. 2019]
|-
! Reana-bccrfast_v0|| BCCRFAST      || anom                ||  V0                      || HadiSST2      || 30          || monthly  || 1950-2010  || CMIP5 hist    || ocn(all)          ||poin hor. no vert || ana_19500115_bccrfast    || ||none
|-
! Reana-bccrfast_v1|| BCCRFAST      || anom                ||  V1a                      || HadiSST2+EN4.1 profiles  || 30          || monthly  || 1980-2010  || CMIP5 hist    || ocn(all)          ||Wang et al 2017, no vert || ana_19791115_bccrfast_SSTTS    || ||none
|-
! Free_bccrfast  || BCCRFAST      || FREE                ||  -                        || -                                              ||  30          || -                || 1850-2010 || CMIP5 hist    || -                    || -                          || ../bccr-fast_historical_18500101/ || || none
|-
! Reana-v1a        || NorESM1-ME    || anom                ||  V1a                      || Hadisst2+EN4.1 profiles      || 30          || monthly  || 1980-2010  || CMIP5 hist    || ocn(all)          ||Wang et al 2017, no vert || NorCPM_V1/ana_19800115_me/              ||  10.11582/2019.00029        || [https://doi.org/10.1029/2019JC015210 Jackson et al. (2019)], Bethke et al. in prep1,Ogawa et al. in prep
|-
! Reana-v1-F      || NorESM1-ME    || full-field          ||  V1a                      || Hadisst2+EN4.1 profiles      || 30          || monthly  || 2000-2010  || CMIP5 hist    || ocn(all)          ||Wang et al 2017, no vert || tape                                                          ||            || [https://www.sciencedirect.com/science/article/pii/S146350031730063X?via%3Dihub Wang et al. 2017]                                                ||
|-
! SFE                        || NorESM1-ME      || anom                ||  V1a              || NOAA-SST+EN4.2 profiles  || 30          || monthly  || 2006-present|| CMIP5 hist  || ocn(all)          ||Wang et al 2017, no vert|| True_Obs-2006-2017/reanalysis/|| || none
|-
! Reana-acpl    || NorESM1-acpl    || anom                ||  V1a                      || Hadisst2+EN4.1 profiles      || 30          || monthly  || 1980-2010  || CMIP5 hist      || ocn(all)          ||Wang et al 2017, no vert || Anomaly_coupled/                        || || Counillon et al. in prep
|-
! Free_twin_V2  || NorESM1-LT      || FREE                ||  -                        || -                                            ||  30          || -                    || 1000-1020  || PI        || -                    || -                                      ||  Twin_experiment/TWIN_Free      || || [https://www.tandfonline.com/doi/abs/10.1080/16000870.2018.1435945 Kimmritz et al. 2018]
|-
! Reana_twin_V2|| NorESM1-LT      || full field            || V2a                      || micom_icec                          ||  30          || monthly        || 1000-1020 || PI        ||ocn(all)  + ice(all)       || 800 km            ||  Twin_experiment/TwinA56/ || || [https://www.tandfonline.com/doi/abs/10.1080/16000870.2018.1435945 Kimmritz et al. 2018]
|-
! Reana-v2-F    || NorESM1-ME    || full field            ||  V2a                    || Hadisst2+EN4.1 profiles      || 30          || monthly  || 1980-2010  || CMIP5 hist    || ocn(all)  + ice(all)      ||Wang et al 2017, no vert, 800 km || NorCPM_V2/ana_me_ICEC-SST-S-T-1980-2010/ ||    || Ogawa et al. in prep
|-
! Reana-v2-a    || NorESM1-ME    || anom                ||  V2a                    || Hadisst2+EN4.1 profiles        || 30          || monthly  || 1980-2010  || CMIP5 hist    || ocn(all)  + ice(all)      ||Wang et al 2017, no vert, 800 km || NorCPM_V2a/ana_me_ICEC-SST-S-T-1980-2010/  ||  || Kimmritz et al. sub, Ogawa et al. in prep
|-
! Reana-v1b      || NorESM1-ME    || anom                ||  V1c                    || Hadisst2+EN4.2 profiles; masked in sea ice    || 30    || monthly  || 1980-2010  || CMIP5 hist    || ocn(all)    ||Wang et al 2017, no vert || NorCPM_V1b/ana_19800115_me/                  ||      || Ogawa et al. in prep
|-
! Reana-v1c      || NorESM1-ME    || anom              ||  V1c                    || Hadisst2+EN4.2 profiles                                    || 30    || monthly  || 1980-2010  || CMIP5 hist    || ocn(all)+ice(all)  ||Wang et al 2017, no vert || NorCPM_V1c/ana_19800115_me/        ||                ||Bethke et al. in prep1, Ogawa et al. in prep
|-
! Reana-v1c-60      || NorESM1-ME    || anom              ||  V1c                    || Hadisst2+EN4.2 profiles                                    || 60    || monthly  || 1980-2010  || CMIP5 hist    || ocn(all)+ice(all) ||Wang et al 2017, no vert || NorCPM_V1c60/ana_19800115_me/ ||                        ||Kimmritz et al. in prep
|-
! Reana-NorCPM1_V1a      || NorESM1-LM    || anom          ||  V1a                      || Hadisst2/NOAA+EN4.2 profiles      || 30          || monthly  || 1950-2018  || CMIP6 hist    || ocn          || Wang et al 2017, no vert ||norcpm1-cmip6_analysis_19500115/      || || Bethke et al. in prep2                                                               
|-
! Reana-NorCPM1_V1c      || NorESM1-LM    || anom          ||  V1c                      || Hadisst2/NOAA+EN4.2 profiles      || 30          || monthly  || 1950-2018  || CMIP6 hist    || ocn+ice          || Wang et al 2017, no vert ||noresm1-cmip6_analysis_19500115/  ||  ||Bethke et al. in prep2                   
|}
 
 
{| class="wikitable" style="text-align:center"
|+Hindcasts
|-
! Name          || Reana used  || length        ||  Model    || period || frequency    || enssize  || path  || doi || papers || prediction skill [http://ns9039k.web.sigma2.no/pgchiu/index.html IVersions (beta)]
|-
!Dec-hind-V0|| Reana-V0  || 10 years  ||  NorESM1-ME    || 1955-2010 || Every 2 years    || 20  || True_Obs-1950-2010/ME_hindcasts/  || || Bethke et al. in prep1 || 
|-
!seas-hind-V2F||Reana-v2-F || 13 months  ||  NorESM1-ME    || 1985-2010 ||4 times per year || 9  || NorCPM_V2/SeasHind_ana_me_ICEC-SST-S-T-1985-2010/ || || none || [http://ns9039k.web.sigma2.no/pgchiu/NorCPM_V2-SeasHind_ana_me_ICEC-SST-S-T-1985-2010/index.html ACC]
|-
!seas-hind-V2a||Reana-v2-a|| 13 months  ||  NorESM1-ME    || 1985-2010 ||4 times per year  || 9  || NorCPM_V2a/hindcast/|| ||Kimmritz et al. in sub || [http://ns9039k.web.sigma2.no/pgchiu/NorCPM_V2a-hindcast/index.html ACC]
|-
!Dec-hind-V1a|| Reana-V1a || 10 years  ||  NorESM1-ME    || 1985-2010 || Every 2 years    || 5  || NorCPM_V1/ana_19800115_me_dec_19851015/  || || Bethke et al. in prep1 ||
|-
!seas-hind-V1a|| Reana-V1a ||13 months  ||  NorESM1-ME    || 1985-2010 || 4 times per year  || 9  || NorCPM_V1/ana_19800115_me_hindcasts/  || 10.11582/2019.00028 || Kimmritz et al. sub || [http://ns9039k.web.sigma2.no/pgchiu/NorCPM_V1-ana_19800115_me_hindcasts/index.html ACC]
|-
!seas-hind-V1b|| Reana-V1b ||13 months  ||  NorESM1-ME    || 1985-2010 || 4 times per year  ||9  || NorCPM_V1b/ana_19800115_me_hindcasts/  || || none || [http://ns9039k.web.sigma2.no/pgchiu/NorCPM_V1b-ana_19800115_me_hindcasts/index.html ACC]
|-
!seas-hind-V1c|| Reana-V1b ||13 months  ||  NorESM1-ME    || 1985-2017 || 4 times per year  || 9  || NorCPM_V1c/ana_19800115_me_hindcasts/  || || none || [http://ns9039k.web.sigma2.no/pgchiu/NorCPM_V1c-ana_19800115_me_hindcasts/index.html ACC]
|-
!seas-hind-acpl||Reana-acpl ||13 months  ||  NorESM1-ME    || 1985-2017 || 4 times per year  ||9  ||  Anomaly_coupled/acpl_19800115_me_hindcasts_* || ||Counillon et al. in prep || [http://ns9039k.web.sigma2.no/pgchiu/NorCPM-Anomaly_coupled/index.html ACC]
|-
!S2S-hind-hightop||Reana-V1a ||3 months  ||  NorESM1-ME    || 1985-2016 || NOV 1st  ||30  ||  /projects/NS9207K/feili/NorCPM_19811101 || doi:10.11582/2019.00014 ||Li et al., JGR-2019 ||
|-
!NorCPM1_i2 (aka V1C)|| Reana-NorCPM1_V1c || 10 years  ||  NorESM1-LM    || 1960-2010 || Every year    || 10  || ../NorESM1-CMIP6/noresm1-cmip6_hindcast/ || || Bethke et al. in prep2 ||
|-
!NorCPM1_i1 (aka V1A)|| Reana-NorCPM1_V1a || 10 years  ||  NorESM1-LM    || 1960-2010 || Every year    || 10  || ../NorESM1-CMIP6/norcpm-cmip6_hindcast/  || || Bethke et al. in prep2 ||
|}

Latest revision as of 08:14, 12 August 2022

The Norwegian Climate Prediction Model (NorCPM) is aiming at providing prediction from seasonal-to-decadal time scale. It is based on the Norwegian Earth System Model (NorESM, [1]) and the Ensemble Kalman Filter (EnKF, [2]) data assimilation method. NorESM is a state of the art Earth system model that is based on the Community Earth System Model (CESM, [3]) but uses a different aerosol/chemistry scheme and ocean model (evolved from MICOM).

The Norwegian Climate Prediction Model

The EnKF is a sequential data assimilation method that allows for fully multivariate and flow-dependent corrections using a covariance matrix produced by a Monte-Carlo ensemble integration.

NorESM model versions used in NorCPM

Version atmosphere/land resolution ocean/sea ice resolution description reference
NorESM1-L T31 bipolar gx3v7 (~3°) Zhang et al., 2012
NorESM1-LT 1.9°x2.5° tripolar 1° Schwinger et al. 2016,Wang et al. 2017, Kimmritz et al. 2018
NorESM1-F 1.9°x2.5° tripolar 1° Gao et al. 2018
NorESM1-ME 1.9°x2.5° bipolar 1° CMIP5 forcings Bentsen et al. 2013, Tjiputra et al., 2013
NorESM1-ME-CMIP6 1.9°x2.5° bipolar 1° CMIP6 forcings Bethke et al. in prep2
NorESM1-ACPL 1.9°x2.5° bipolar 1° Anomaly coupling modifies coupling fields by a fixed seasonal climatological correction,
such that biases in SSTs and surface wind stress are obviated.
Toniazzo and Koseki 2018
NorESM1-H 0.9x1.25° tripolar 1/4° Langehaug et al. 2018
NorESM1-High-Top 1.9°x2.5° bipolar 1° The atmosphere component CAM is replaced by WACCM Li et al. 2019
NorESM2-LM tripolar 1° Seland et al. 2020
NorESM2-MM 0.9x1.25° tripolar 1° Seland et al. 2020
NorESM1.3-HR .25; tripolar .25; Seland et al. 2020

NorCPM Versions

FREE: refers to an ensemble simulation of NorESM carried without assimilation and starting from the same initial ensemble than the assimilation experiment. The initial ensemble is generated by spinning up an ensemble of states (sampled from a long preindustrial forcing run) with real historical forcing from 1850. Such an experiment provides a benchmark for data assimilation and is also used to disentangle the part of prediction skill related to natural internal variability from the part driven by external forcing.
Version 0 (V0): refers to version of NorCPM that assimilates SST only. SST is the only observational dataset available in the ocean for a period of time sufficient (> 100 years) to clearly demonstrate the skill of decadal prediction. Assimilation updates vertically the full ocean while the remaining components of the Earth system model (atmosphere, sea ice, land) are left unchanged but they will adjust dynamically between the monthly assimilation step (an approach referred as weakly coupled data assimilation).

V0 was first tested in idealised twin experiment (Counillon et al. 2014). It is found that assimilation reduces error and can constrain well the variability of the ocean – with the largest improvements in the near surface and sea ice with some benefit over land for temperature and precipitation. The system beats persistence forecast and shows skill for the heat content in the Nordic Seas that is close to the upper predictability limit.
V0 was tested in a real framework and a long stochastic reanalysis was produced for the period 1950—2010 which assimilates the anomaly of the HadiSST2 within the period 1950-2010. HadiSST2 provides a stochastic reconstruction of SST - that is, providing a three-dimensional estimate of the measurement and its accuracy - for the period 1850-2010. A method referred to as upscaling (Wang et al. 2016) is used to ensure that the assimilation does not introduce a drift when updating the non-Gaussian distributed layer thickness variables. The system can reproduce well the North Atlantic variability and shows good agreement with the independent objective analysis of the oceanic heat content and salt content globally. It was noted that using a flow-dependent data assimilation method and formulating the ocean covariance in isopycnal coordinates are an important ingredient for efficiently propagating the surface information below the mixed layer in the Labrador Sea and to constrain the formation of deep water convection.
In Wang et al. (sub) hindcasts are started from a shorter reanalysis (started in 1980) reanalysis. The system shows highly competitive skill compared to North American Multi-Model Ensemble and skillful skill for sea ice extent was variability is driven by ocean variability (e.g. in the boreal winter in the Barents Sea, the Labrador Sea and Greenland Iceland Nordic Seas). The skill of decadal hindcasts was tested for 1955:2010. There is some skill for prediction of AMO and AMOC at 26 but the prediction of the SPG is poor despite a very good match during the reanalysis. Bethke et al. in prep1 identified that the reason for the poor forecast is a combination of poor initialisation of the deep subtropical water temperature and near-surface salinity in the SPG region.


Version 1 (V1): the system is complemented with the assimilation of hydrographic profiles. Assimilating observations in an isopycnal coordinate model is not straightforward as the observation operator must interpolate either from isopycnal coordinates to z coordinates or vice versa. In Wang et al. 2016 it is shown that the approach to interpolate the model onto z coordinates (still keeping the covariance in isopycnal coordinates) is more linear than interpolating the observations to isopycnal coordinates and as such more efficient. Practical implementations of localisation and the representation error were extensively tested and V1 has been run with an optimal setting. The system is shown to be able to constrain well the error in the interior while being reliable. The performance of the prediction was tested for the period 1980-2017 in the real framework with anomaly assimilation. While complementing the system with hydrographic profile yields little benefit on the seasonal time scale, it greatly enhances the skill for decadal predictions in the SPG region (Bethke et al. in prep1). There are currently different version of V1. In V1a, all ocean observations are kept and we do not update the sea ice compartment during assimilation. In V1b, we reject observation if it is located in places where there is ice. In v1c all observations are retained but the error for hydrographic profiles is inflated by a factor of 3 in sea ice covered region because there is large uncertainty for the climatology there (with anomaly assimilation). We also update the sea ice compartment (strongly coupled DA). Most difference between v1a, v1b, and v1c is in sea ice covered region and v1c is performing best there. V1c and v1a will be used for CMIP6 DCPP.


Version 2 (V2): the system is complemented with assimilation of sea ice concentration. In Kimmritz et al. 2018, we tested different implementations of the data assimilation system in an idealised twin experiment. It is shown that a joint update of the ocean and the sea ice state during the assimilation is beneficial (strongly coupled data assimilation) with a flow-dependent covariance method. It is also strongly beneficial to include the different thickness categories in the state vector. Assimilation is able to constrain well errors in sea ice and in the near-surface ocean. The method is tested in the real framework in Kimmritz et al. in prep. The system show reduced error for sea ice thickness. Prediction of sea ice extent are also greatly enhanced in many regions were sea ice yields predictability.


High-Top: the system is developped for subseasonal-to-seasonal(S2S)prediction Li et al. 2019. In this version, the atmospheric component (normally the CAM model) is replaced with the Whole Atmosphere Community Climate Model (WACCM) version 4 (Marsh et al., 2013). WACCM extends vertically into the mesosphere‐lower thermosphere region (up to 5.9 × 10−6 hPa, approximately 140 km). In addition, it incorporates an interactive stratospheric chemistry package and a parameterization of orographic and nonorographic (convective and frontal) gravity waves. A 30-year set of coupled S2S hindcasts were made with initialised atmosphere, ocean and land components to examine the role of snow cover initialisation in wintertime predictions through a stratosphere-troposphere coupling. A twin hindcast set with scrambled snow initial conditions was also made to determine the skill increment.


For each of the NorCPM version the assimilation are either carried using full field assimilation or anomaly assimilation. In full field assimilation the observations are assimilated as they are. An advantage of that approach is that it constrains the model bias, but there is a risk that models are attracted to their bias climatology. In such a case, the redundant corrections will transfer the bias from the observed variables to the non-observed variables via the covariance during assimilation. In anomaly assimilation the anomaly of model and observation are calculated from their respective seasonal climatology before they are compared. As a consequence, bias is left as they are and we aim only at synchronising the variability. This approach also has some drawback as bias in the mean state comes with a bias in its variability (for example with the classical bilocation of the Gulf Stream). Carrassi et al. 2014 details the advantage and inconvenient of both approaches.
Dr Barthelemy is currently investigating a suites of computationally cheaper data assimilation method than the standard EnKF. The first one is the Hybrid EnKF-OI which combine the dynamical covariance with stain covariance from a long 300 year pre industrial run. The second one seeing the Dual-resolution EnKF in which the covariance of the system at two resolution are combined for the data assimilation step. The combined EnKF-OI and Dual resolution EnKF are also tested. The EnOI is also considered as one of the benchmark in which covariance are constructed from a long pre industrial run.

Projects funding the NorCPM activities


Current:NFR-SFI Climate Futures (2020-2030), NFR-INES (2018-2021), BFS-BCPU (2018-2021), EU-TRIATLAS (2019-2024), JPI ROADMAP (2020-2022), JPI-EUREC4A-OA (2020-2022), NFR COREA (2020-2023), SKD-PARCIM (2021-2024), NFR 4SICE (2021-2024)
Completed:NFR-SNOWGLACE (2015-2018), NFR-EPOCASA (2014-2017), EU-PREFACE (2014-2017), SKD-PARADIGM (2015-2017), SKD- INCREASE (2015-2017), SKD-PRACTICE (2012-2015), EU-INTAROS (2016-2020), EU-Blue-Action (2016-2019), NFR-SFE (2018-2021), Norforsk-ARCPATH (2016-2020),


NorCPM activities receive a grant for computer time from the Norwegian Program for supercomputer (NOTUR2, project number NN9039K) and a storage grant (NORSTORE, NS9039K).

Publications, outreach etc.

NorCPM is contributing to the WMO Lead Centre for Annual-to-Decadal Climate Prediction and Sea ice outlook under the name BCCR and to CMIP6 DCPP under the name norcpm-1.

  1. Counillon, F., Bethke, I., Keenlyside, N., Bentsen, M., Bertino, L., & Zheng, F. (2014). Seasonal-to-decadal predictions with the ensemble Kalman filter and the Norwegian Earth System Model: a twin experiment. Tellus A, 66. doi:10.3402/tellusa.v66.21074
  2. Wang Y, Counillon F, Bertino L. Alleviating the bias induced by the linear analysis update with an isopycnal ocean model. Quarterly Journal of the Royal Meteorological Society. 2016. https://doi.org/10.1002/qj.2709
  3. Counillon F, Keenlyside N, Bethke I, Wang Y, Billeau S, Shen M-L, et al. Flow-dependent assimilation of sea surface temperature in isopycnal coordinates with the Norwegian climate prediction model. Tellus. Series A, Dynamic meteorology and oceanography. 2016;68:32437.
  4. Gleixner S.; Keenlyside N.; Dimissie T., Counillon F., Wang Y.; Viste E. Seasonal predictability of Kiremt rainfall in CGCMs, Environmental Research Letters 2017.
  5. Wang Y, Counillon F, Bethke I, Keenlyside N, Bocquet M, Shen M-L. Optimising assimilation of hydrographic profiles into isopycnal ocean models with ensemble data assimilation. Ocean Modelling. 2017;114.
  6. Kimmritz M., Counillon F., Bitz C.M., Massonnet F., Bethke I., Gao Y. Optimising assimilation of sea ice concentration in an Earth system model with a multicategory sea ice model, Tellus A., 2018
  7. Wang, Y., Counillon, F., Keenlyside, N. et al. Seasonal predictions initialised by assimilating sea surface temperature observations with the EnKF, Clim Dyn, 2019. https://doi.org/10.1007/s00382-019-04897-9
  8. F. Li, Y. J. Orsolini, N. Keenlyside, M.-L. Shen, F. Counillon, Y. Wang Impact of snow initialization in subseasonal-to-seasonal winter forecasts with the Norwegian Climate Prediction Model. JGR 10.1029/2019JD030903
  9. Jackson et al. (2019): The mean state and variability of the North Atlantic circulation: A perspective from ocean reanalyses. Journal of Geophysical Research: Oceans, 124, 2–30.
  10. Kimmritz, M., Counillon, F., Smedsrud, L. H., Bethke, I., Keenlyside, N., Ogawa, F., & Wang, Y. ( 2019). Impact of ocean and sea ice initialisation on seasonal prediction skill in the Arctic. Journal of Advances in Modeling Earth Systems, 11.
  11. Fransner, F., Counillon, F., Bethke I., Tjiputra J., Samuelsen A., Nummelin A., Olsen, A. Ocean Biogeochemical Predictions—Initialization and Limits of Predictability. Frontiers in Marine Science, 16, 2020
  12. D. Smith et al., North Atlantic climate far more predictable than models imply, Nature, 583, 796–800 (2020)
  13. Dai P, Gao Y, Counillon F, Wang Y, Kimmritz M, Langehaug HR. Seasonal to decadal predictions of regional Arctic sea ice by assimilating sea surface temperature in the Norwegian Climate Prediction Model. Climate Dynamics. 2020
  14. Yang S, Gao Y, Koenigk T, Keenlyside N, Counillon F. The Climate Model: An ARCPATH Tool to Understand and Predict Climate Change. In: Nordic Perspectives on the Responsible Development of the Arctic: Pathways to Action. 2020.
  15. Keenlyside N, Kosaka Y, Vigaud N, Robertson A, Wang Y, Dommenget D, et al. Basin Interactions and predictability. In: Interacting Climates of Ocean Basins. 2020.
  16. Counillon F., Keenlyside N., Koseki S., Demissie T., Svendsen L., Toniazzo T., Bethke I., Wang Y. Relating model bias and prediction skill in the equatorial Atlantic, Clim Dyn (2021).
  17. Guttu,S., Y. Orsolini, F. Stordal, O. H. Otterå and N.-E. Omrani The 11 year solar cycle UV irradiance effect and its dependency on the Pacific Decadal Oscillation, Environ. Res. Lett. 16 (2021) 064030.
  18. Guttu S, Orsolini Y, Stordal F, Otterå OH, Omrani N-E, Tartaglione N, Verronen PT, Rodger CJ, Clilverd MA. Impacts of UV Irradiance and Medium-Energy Electron Precipitation on the North Atlantic Oscillation during the 11-Year Solar Cycle. Atmosphere (Special Issue Dynamics and Chemistry of the Middle and Upper Atmosphere and Its Response to External Forcing—Observations and Models). 2021; 12(8):1029. https://doi.org/10.3390/atmos12081029.
  19. Bethke, I., Wang, Y., Counillon, F., Keenlyside, N., Kimmritz, M., Fransner, F., Samuelsen, A., Langehaug, H., Svendsen, L., Chiu, P.G. and Passos, L., 2021. NorCPM1 and its contribution to CMIP6 DCPP. Geoscientific Model Development, 14(11), pp.7073-7116.
  20. Singh, T., Counillon, F., Tjiputra, J., Wang, Y. and El Gharamti, M., 2022. Estimation of Ocean Biogeochemical Parameters in an Earth System Model Using the Dual One Step Ahead Smoother: A Twin Experiment. Frontiers in Marine Science.
  21. Langehaug, H.R., Ortega, P., Counillon, F., Matei, D., Maroon, E., Keenlyside, N., Mignot, J., Wang, Y., Swingedouw, D., Bethke, I. and Yang, S., 2021. Propagation of Thermohaline Anomalies and their predictive potential along the Atlantic water pathway. Journal of Climate, pp.1-60.
  22. Passos, L., Langehaug, H.R., Årthun, M., Eldevik, T., Bethke, I. and Kimmritz, M., 2022. Impact of initialization methods on the predictive skill in NorCPM: an Arctic–Atlantic case study. Climate Dynamics.
  23. Barthélémy, S., Brajard, J., Bertino, L. and Counillon, F., 2022. Super-resolution data assimilation. Ocean Dynamics.

User Resources

All the code for running the system is available on GitHub. The repository is private so please request to an account to access it. [https://github.com/BjerknesCPU/NorCPM]


Contact informations


Leader Prof. Noel Keenlyside;
NorESM related questions Dr. Ingo Bethke, Alok Gupta;
Data assimilation related questions Dr. François Counillon, Dr. Yiguo Wang; Dr. Sebastien Barthelemy
Sea ice prediction Dr. François Counillon, Dr. Yiguo Wang;
Atmospheric nudging Dr. Mao-Lin Shen, Dr. Fei Li;
Biochemistry predictions Dr. Filippa Fransner Dr. Tarkeshwar Singh
High-top version Dr. Fei Li Prof. Yvan J. Orsolini

Existing runs

Following is a table that summarise the different experiment runs available so far:

All data are available on Norwegian storage facilities NIRD norwegian . All path below are given relative to the path /projects/NS9039K/shared/norcpm/cases/NorCPM/. If you have access to NIRD but not to NS9039K contact Noel Keenlyside or Ingo Bethke otherwise contact the person with relevant expertise as detailed in the Contact information section.


Reanalysis
Name NorESM version full_field/anom NorCPM version Obs data set ens size assim freq period forcing var updated localisation Path on NIRD Dataset DOI Publications using it
Reana_twin_PI NorESM1-L full_field V0 Micom SST 30 monthly 610-710 PI ocn(all) poin hor. no vert tape Counillon et al. 2014
Free_PI NorESM1-L FREE - - 30 - 610-710 PI - - tape Counillon et al. 2014
Free_NorESM1 NorESM1-ME FREE - - 30 - 1850-2099 CMIP5 hist - - ../NorESM1-ME_historicalExt_noAssim/ Counillon et al. 2016
Free_NorESM1-LM NorESM1-LM FREE - - 30 - 1850-2099 CMIP6 hist - - ../NorESM1-CMIP6// Bethke et al. in prep2
Reana-V0-long NorESM1-ME anom V0 HadiSST2 30 monthly 1950-2010 CMIP5 hist ocn(all) poin hor. no vert True_Obs-1950-2010/ME/ 10.11582/2016.00002 Counillon et al. 2016, Bethke et al. in prep1
Reana-V0-short NorESM1-ME anom V0 HadiSST2 30 monthly 1980-2010 CMIP5 hist ocn(all) 30 obs True_Obs-1980-2000/ana_19800115_me/ Wang et al. 2019
Reana-bccrfast_v0 BCCRFAST anom V0 HadiSST2 30 monthly 1950-2010 CMIP5 hist ocn(all) poin hor. no vert ana_19500115_bccrfast none
Reana-bccrfast_v1 BCCRFAST anom V1a HadiSST2+EN4.1 profiles 30 monthly 1980-2010 CMIP5 hist ocn(all) Wang et al 2017, no vert ana_19791115_bccrfast_SSTTS none
Free_bccrfast BCCRFAST FREE - - 30 - 1850-2010 CMIP5 hist - - ../bccr-fast_historical_18500101/ none
Reana-v1a NorESM1-ME anom V1a Hadisst2+EN4.1 profiles 30 monthly 1980-2010 CMIP5 hist ocn(all) Wang et al 2017, no vert NorCPM_V1/ana_19800115_me/ 10.11582/2019.00029 Jackson et al. (2019), Bethke et al. in prep1,Ogawa et al. in prep
Reana-v1-F NorESM1-ME full-field V1a Hadisst2+EN4.1 profiles 30 monthly 2000-2010 CMIP5 hist ocn(all) Wang et al 2017, no vert tape Wang et al. 2017
SFE NorESM1-ME anom V1a NOAA-SST+EN4.2 profiles 30 monthly 2006-present CMIP5 hist ocn(all) Wang et al 2017, no vert True_Obs-2006-2017/reanalysis/ none
Reana-acpl NorESM1-acpl anom V1a Hadisst2+EN4.1 profiles 30 monthly 1980-2010 CMIP5 hist ocn(all) Wang et al 2017, no vert Anomaly_coupled/ Counillon et al. in prep
Free_twin_V2 NorESM1-LT FREE - - 30 - 1000-1020 PI - - Twin_experiment/TWIN_Free Kimmritz et al. 2018
Reana_twin_V2 NorESM1-LT full field V2a micom_icec 30 monthly 1000-1020 PI ocn(all) + ice(all) 800 km Twin_experiment/TwinA56/ Kimmritz et al. 2018
Reana-v2-F NorESM1-ME full field V2a Hadisst2+EN4.1 profiles 30 monthly 1980-2010 CMIP5 hist ocn(all) + ice(all) Wang et al 2017, no vert, 800 km NorCPM_V2/ana_me_ICEC-SST-S-T-1980-2010/ Ogawa et al. in prep
Reana-v2-a NorESM1-ME anom V2a Hadisst2+EN4.1 profiles 30 monthly 1980-2010 CMIP5 hist ocn(all) + ice(all) Wang et al 2017, no vert, 800 km NorCPM_V2a/ana_me_ICEC-SST-S-T-1980-2010/ Kimmritz et al. sub, Ogawa et al. in prep
Reana-v1b NorESM1-ME anom V1c Hadisst2+EN4.2 profiles; masked in sea ice 30 monthly 1980-2010 CMIP5 hist ocn(all) Wang et al 2017, no vert NorCPM_V1b/ana_19800115_me/ Ogawa et al. in prep
Reana-v1c NorESM1-ME anom V1c Hadisst2+EN4.2 profiles 30 monthly 1980-2010 CMIP5 hist ocn(all)+ice(all) Wang et al 2017, no vert NorCPM_V1c/ana_19800115_me/ Bethke et al. in prep1, Ogawa et al. in prep
Reana-v1c-60 NorESM1-ME anom V1c Hadisst2+EN4.2 profiles 60 monthly 1980-2010 CMIP5 hist ocn(all)+ice(all) Wang et al 2017, no vert NorCPM_V1c60/ana_19800115_me/ Kimmritz et al. in prep
Reana-NorCPM1_V1a NorESM1-LM anom V1a Hadisst2/NOAA+EN4.2 profiles 30 monthly 1950-2018 CMIP6 hist ocn Wang et al 2017, no vert norcpm1-cmip6_analysis_19500115/ Bethke et al. in prep2
Reana-NorCPM1_V1c NorESM1-LM anom V1c Hadisst2/NOAA+EN4.2 profiles 30 monthly 1950-2018 CMIP6 hist ocn+ice Wang et al 2017, no vert noresm1-cmip6_analysis_19500115/ Bethke et al. in prep2


Hindcasts
Name Reana used length Model period frequency enssize path doi papers prediction skill IVersions (beta)
Dec-hind-V0 Reana-V0 10 years NorESM1-ME 1955-2010 Every 2 years 20 True_Obs-1950-2010/ME_hindcasts/ Bethke et al. in prep1
seas-hind-V2F Reana-v2-F 13 months NorESM1-ME 1985-2010 4 times per year 9 NorCPM_V2/SeasHind_ana_me_ICEC-SST-S-T-1985-2010/ none ACC
seas-hind-V2a Reana-v2-a 13 months NorESM1-ME 1985-2010 4 times per year 9 NorCPM_V2a/hindcast/ Kimmritz et al. in sub ACC
Dec-hind-V1a Reana-V1a 10 years NorESM1-ME 1985-2010 Every 2 years 5 NorCPM_V1/ana_19800115_me_dec_19851015/ Bethke et al. in prep1
seas-hind-V1a Reana-V1a 13 months NorESM1-ME 1985-2010 4 times per year 9 NorCPM_V1/ana_19800115_me_hindcasts/ 10.11582/2019.00028 Kimmritz et al. sub ACC
seas-hind-V1b Reana-V1b 13 months NorESM1-ME 1985-2010 4 times per year 9 NorCPM_V1b/ana_19800115_me_hindcasts/ none ACC
seas-hind-V1c Reana-V1b 13 months NorESM1-ME 1985-2017 4 times per year 9 NorCPM_V1c/ana_19800115_me_hindcasts/ none ACC
seas-hind-acpl Reana-acpl 13 months NorESM1-ME 1985-2017 4 times per year 9 Anomaly_coupled/acpl_19800115_me_hindcasts_* Counillon et al. in prep ACC
S2S-hind-hightop Reana-V1a 3 months NorESM1-ME 1985-2016 NOV 1st 30 /projects/NS9207K/feili/NorCPM_19811101 doi:10.11582/2019.00014 Li et al., JGR-2019
NorCPM1_i2 (aka V1C) Reana-NorCPM1_V1c 10 years NorESM1-LM 1960-2010 Every year 10 ../NorESM1-CMIP6/noresm1-cmip6_hindcast/ Bethke et al. in prep2
NorCPM1_i1 (aka V1A) Reana-NorCPM1_V1a 10 years NorESM1-LM 1960-2010 Every year 10 ../NorESM1-CMIP6/norcpm-cmip6_hindcast/ Bethke et al. in prep2